Natura 2000 From patchwork to network?

Joachim Mergeay

Ghent, Belgium 15-18 April 2013

Natura 2000 is an ecological **network of protected areas**, set up to ensure the **survival** of Europe's most valuable **species** and **habitats**.

The green infrastructure it provides safeguards numerous **ecosystem services** and ensures that Europe's natural system remain **healthy and resilient**.

ALTER

"Member states must encourage the management of features of the landscape which are essential for the migration, dispersal and genetic exchange of wild species"

ALTER

- Green network to connect N2000 sites
- How to define a functional network?
 - * The real world is also patchy
 - * How much connection is needed?

Natura 2000 is the sum of bird and habitat directives

- Not based on spatial coherence
- Not designed to be functional network
- Based on "best remaining sites"
- Heterogenous quality across member states

ALTER

Heterogenous fragmentation

Fragmentation

Jaeger et al. 2011

Map 3.4 Landscape fragmentation per 1 km² grid in the Channel region in 2009

Note: Landscape fragmentation was calculated using fragmentation geometry FG-B2.

Fragmentation in Flanders

- 462 inh/km²
- Urbanisation: 98.3%
- Urbanisatie surface: 25%
- Agriculture: 62%
- Protected nature: 3%
 - Av size : 26 ha
- Densest road network EU

Science underpinning the EU 2020 Biodi Ghent, Belgium 15-18 April 2013

Extinction debt

Delayed loss of diversity after habitat loss

Ghent, Belgium 15-18 April 2013

Extinction debt

Succisa pratensis $67\% N_{e} < 50$ $18\% 50 < N_{e} < 100$ $15\% 100 < N_{e}$

>75% decline since 1970

Common viper

1980 - 2001

2001 - 2012

E. Graitson, 2012

Common viper, Ardennes

Ghent, Belgium 15-18 April 2013

Natura 2000 is the sum of bird and habitat directives

 We need effective protection of Natura 2000 sites to "ensure the survival of Europe's most

Natura 2000 is the sum of bird and habitat directives

- We need effective protection of Natura 2000 sites
- We need more than Natura2000 for functional connectivity

Misconception: green infrastructure connects ecosystems / nature reserves

Scienc Ghent, Be

Species differ in their perception of fragmentation

Need for defragmentation varies across taxa

ALTER-Ne

 Physical connection does not guarantee functional connectivity and vice-versa

Species differ in their perception of fragmentation

- Species differ in their perception of connectivity (grain)
- Functional connectivity is defined at the species level

ALTER

• Connections should be tailored to species

Misconception: green infrastructure connects ecosystems / nature reserves

- Organisms do not actively seek connections
- Anthropogenic view on connectivity

Science ur Ghent, Belgiur

Functional network is not merely rolling out green carpets between N2000 sites

Functional network?

- Colonization
- Exchange
 - → compensation of stochastic processes

ALTER-N

• → allow spread of adaptive genes

Why do we need a functional network?

To ensure the survival of Europe's most valuable species and habitats

Among habitats Among species Within species

Processes affecting diversity

- Among species
- Ecological drift ↓
- Dispersal ↑
- o Speciation ↑

- Within species
- genetic drift ↓
- Gene flow ↑ (locally)
- Mutation ↑ (globally)
 Selection ↑ ↓

ALTER-Ne

Science underpinning the EU 2020 Biodiversity Strategy Ghent, Belgium 15-18 April 2013

MCTIGGEN JC I GERARI CAGAMA BAR

g gaach in gala bacac an ag

530

Processes affecting diversity

When dispersal rate equals rate of drift (stochastic loss of diversity)

➔no net loss of diversity

Defines required connectivity

ALTER-

Conservation of diversity

- Interaction between size and dispersal
 - Loss of diversity by chance is function of size
 - Species-area relation
 - Genetic diversity effective size relation

Connectivity and the paradox of small populations

- Small populations lose diversity more rapidly
- Rate of loss ~ 1/2N_e

Connectivity and the paradox of small populations

• If N=10, migration rate must be > 5%

- If N=100, migration rate must be > 0.5%
- Small populations require more robust connections

Connectivity and the paradox of small populations

The stronger the landscape fragmentation, the more focus there should be on **enlarging**

Irrespective of density-dependence Very little dispersal in low-quality habitats

ALTER

Functional connectivity

Is easier to reach among large populations

- Increasing connectivity helps, but first there needs to be high quality sites with thriving wildlife populations to connect. (Lawton et al. 2010)
- In highly fragmented landscapes enlarging more cost-efficient (Ovaskainen 2012)

ALTER-

Components of ecological network

- Corridors and stepping stones
- Restoration areas
- Buffer zones
- Sustainable use areas

Lawton et al. 2010: DEFRA report

Science underpinning the EU 2020 Biodiversity Strategy Ghent, Belgium 15-18 April 2013 Sustainable use area

How much connection is needed?

- Genetic criteria for population size
- At *metapopulation* scale: mantain 95% of genetic diversity over 100 years, t generations
- * Subpopulations functionally connected

ALTER

- Common tree frog, Hyla arborea. N_{e,95} = 244
- Estimates of N_e

- Common tree frog, Hyla arborea. N_{e.95} = 244
- Majority of current "metapopulations" too small
- Most isolated populations or metapopulations cannot be connected functionally to other populations
 - o → enlarging only option

Common tree frog, Hyla arborea in Vijvergebied

2000: isolated small population

Ghent, Belgium 15-18 April 2013

Common tree frog, Hyla arborea in Vijvergebied

- 2000: isolated small population
- 2012 "Vijvergebied":
 - Population size: c. 3000 4000 frogs
 - Distributed over area > 100x larger

Increasing habitat quality and quantity led to increased functional connectivity

Lawton et al. 2010, Ovaskainen 2012: Enlarging (UK, NL) is top priority. Enlarging will automatically increase average connectivity.

Common tree frog, Hyla arborea in Vijvergebied

- 2000: isolated small population
- 2012 "Vijvergebied":
 - Population size: c. 3000 4000 frogs
 - Distributed over area > 100x larger

Increasing habitat quality and quantity led to increased functional connectivity

Lawton et al. 2010, Ovaskainen 2012: Enlarging (UK, NL) is top priority. Enlarging will automatically increase average connectivity.

Further reading

- Lawton, J. H., P. N. M. Brotherton, V. K. Brown, C. Elphick, A. H. Fitter, J. Forshaw, R. W. Haddow, S. Hilborne, R. N. Leafe, G. M. Mace, M. P. Southgate, W. J. Sutherland, T. E. Tew, J. Varley, and G. R. Wynne. 2010. Making Space for Nature: a review of England's wildlife sites and ecological network. Report to Defra.
- Jaeger, J. A. G., T. Soukup, L. F. Madriñán, C. Schwick, and F. Kienast. 2011. Landscape fragmentation in Europe. Joint EEA-FOEN report. EEA, Copenhagen, Denmark.
- Ovaskainen, O. 2012. Strategies for Improving Biodiversity Conservation in the Netherlands: Enlarging Conservation Areas vs. Constructing Ecological Corridors. Helsinki University, Helsinki, Finland.

ALTER